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A command filtered backstepping approach is presented that uses adaptive function approximation to control
unmanned air vehicles. The controller is designed using three feedback loops. The command inputs to the airspeed
and flight-path angle controller areχc, γc, Vc and the bounded first derivatives of these signals. That loop generates
comand inputs µc, αc for a wind-axis angle loop. The sideslip angle command βc is always zero. The wind-axis
angle loop generates rate commands Pc, Qc, Rc for an inner loop that generates surface position commands. The
control approach includes adaptive approximation of the aerodynamic force and moment coefficient functions.
The approach maintains the stability (in the sense of Lyapunov) of the adaptive function approximation process
in the presence of magnitude, rate, and bandwidth limitations on the intermediate states and the surfaces.

I. Introduction

A VARIETY of feedback control approaches have been devel-
oped to deal with nonlinear systems.1−3 Various authors have

investigated the applicability of these nonlinear control methodolo-
gies to advanced flight vehicles. For flight control, these methods
offer both increases in performance as well as reduction of devel-
opment times by dealing with the complete dynamics of the vehicle
rather than local operating point designs. Feedback linearization,
in its various forms, is perhaps the most commonly employed non-
linear control method in flight control.4−9 Backstepping-based ap-
proaches are discussed for example in Refs. 10–14. Reference 15
presents a nonlinear model predictive control approach that relies
on a Taylor-series approximation to the system’s differential equa-
tions. Optimal control techniques are applied to control load factor
in Ref. 16. Prelinearization theory and singular perturbation theory
are applied for the derivation of inner- and outer-loop controllers
in Ref. 7. The main drawback to the nonlinear control approaches
just mentioned is that, as model-based control methods, they re-
quire accurate knowledge of the plant dynamics. This is of sig-
nificance in flight control because aerodynamic parameters always
contain some degree of uncertainty. Although some of these ap-
proaches are robust to small modeling errors, they are not intended
to accommodate significant unanticipated errors that can occur in
the event of failure or battle damage. In such an event, the aero-
dynamics can change rapidly and deviate significantly from the
model used for control design. Uninhabited air vehicles (UAVs)
are particularly susceptible to such events because there is no pilot
onboard.

To address the issue of uncertainty, several “robustifying” tech-
niques have been developed:
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1) Parameter adaptive methods deal with parametric uncer-
tainty,17 in which the nonlinearities are assumed to be known, but
some of the parameters that multiply these nonlinearities are un-
known.

2) Robust methods deal with the case in which upper bounds on
the unknown nonlinearities are known and the control is devised
based on the bounds18; therefore, these methods tend to be conser-
vative, sometimes leading to high-gain feedback.

3) Robust adaptive methods combine parametric uncertainty and
unknown nonlinearities with partially known bounds.19

In many applications, such as the control of high-performance
aircraft and UAVs, improved control can be achievable if the un-
known nonlinearities are approximated online (i.e., during opera-
tion). Examples of such online approximators include sigmoidal
neural networks, splines, racial basis functions, and wavelets. The
application of online approximation methods to nonlinear systems
in a feedback framework yields a complex nonlinear closed-loop
system, which is analyzed using Lyapunov stability methods. Typ-
ically, the feedback control law and the adaptive law for updating
the approximator parameters are derived by using a Lyapunov func-
tion, whose time derivative is forced to have some desirable stability
properties (for example, negative definiteness). Therefore, the sta-
bility of the closed-loop system is obtained during the synthesis of
the adaptive control laws. Examples of this type of approach, which
is referred to as a Lyapunov synthesis method, include Refs. 10, 14,
and 20–31.

From a practical perspective, one of the major issues in feedback
control system design is that the signal u(t) generated by the control
law might not be implementable because of physical constraints. A
common example of such a constraint is actuator saturation, which
imposes limitations on the magnitude of the achievable control in-
put. In some applications this problem is crucial, especially in com-
bination with nonlinear online approximation-based control, which
tends to be aggressive in seeking the desired tracking performance.
In aircraft control applications, input saturation is caused by lim-
itations on control surface deflections. For UAVs, the absence of
humans onboard can allow more aggressive maneuvering; however,
the feedback control law has to deal both with unknown nonlin-
earities and input saturation. Another practical issue of significant
importance in many applications, especially in backstepping control
where states are used as intermediate control variables, is physical
constraints on state variables. Such constraints can include magni-
tude, rate, and bandwidth limitations of the state variables.
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Control signal rate and amplitude constraints in an adaptive linear
control framework are addressed in, for example, Refs. 32–38. One
possible approach is to completely stop adaptation during satura-
tion of the control input. Although this ad hoc method does prevent
the tracking error induced by actuator constraints from corrupting
parameter estimation, the stability properties of the closed-loop sys-
tem cannot be established. An alternate approach, which we refer
to as training signal hedging (TSH), for example, see Refs. 32 and
36, modifies the tracking error definition used in the parameter up-
date laws. Finally, a third approach, referred to as pseudocontrol
hedging (PCH), alters the commanded input to the loop.35,37 The
idea behind the PCH approach is to attenuate the command to the
loop so that the generated control signal is implementable without
exceeding the actuator constraints. Constraints on the intermedi-
ate control signals (i.e., state variable and actuator commands) in
approximation-based backstepping are addressed by the command
filtering approach described for nonlinear scalar systems in Refs. 33,
39, and 40 and for nonlinear block vector systems in Ref. 34. In ad-
dition to addressing constraints on the intermediate and actuator
control signals, in relation to standard backstepping, the command
filtering approach is applicable to a wider class of systems. Finally,
it eliminates complications related to computing the analytic deriva-
tives of the intermediate control signals.

This paper presents an online approximation-based backstepping
control approach for advanced flight vehicles. The approach uses the
block vector command filtered approach described in Ref. 34. The
control law is designed using three feedback loops. The inputs to the
airspeed and flight-path angle controller are commanded heading χc,
climb rate γc, speed Vc, and the bounded first derivatives of these
signals. That flight-path angle controller generates roll angle and
angle-of-attack command inputs (µc, αc) for a wind-axis angle loop.
The sideslip angle command βc is always zero. The wind-axis angle
loop generates angular rate commands Pc, Qc, Rc for an inner-loop
controller that uses actuator distribution to generate surface position
commands. The control approach includes online approximation
of the aerodynamic force and moment coefficient functions. The
approach maintains the stability (in the sense of Lyapunov) of the
online function approximation process in the presence of magnitude,
rate, and bandwidth limitations on the intermediate states and the
surfaces.

The approach herein develops online approximations to the air-
craft force and moment functions. Similar approaches using off-line
approximations have a long history in the aerodynamics commu-
nity. Trankle et al. review off-line system identification methods in
Ref. 41. The example of this paper will use splines in the system
identification process. An overview, with several examples of off-
line, spline-based, system identification based on data partitioning,
is presented in Ref. 42. An excellent review of off-line estimation of
aircraft model parameters from flight data is contained in Ref. 43.
Finally, Ref. 44 performs off-line estimation of additive functional
corrections to the aircraft model. The corrections are multidimen-
sional cubic splines (see p. 1294 of Ref. 44), which is interesting
relative to the approach herein in which such model error is approx-
imated online.

The main advantages of the approach presented herein include
1) the aerodynamic force and moment models are automatically ad-
justed to accommodate changes to the aerodynamic properties of the
vehicle; 2) Lyapunov stability results are provable; and 3) state and
control constraints can be enforced while maintaining Lyapunov
stability. The main motivations for this work were to produce a
simplified control design that is also more robust to model error,
to accommodate large changes in the vehicle dynamics (e.g., dam-
age) online, and to learn the aerodynamic coefficient functions for
the vehicle. An anticipated benefit from these properties is that the
controller could be applied to an aircraft for which it was not ex-
plicitly designed, for example, an aircraft of the same family but
different configuration. Additionally, the controller could be devel-
oped using a lower-fidelity model than required by current methods,
thereby offering a cost savings. This control method is expected to
provide significant reduction in design time because the control sys-
tem design does not depend on a conglomeration of point designs.

Reference 45 discusses some of these benefits in the context of
adaptive control for guided munitions.

The derivation of the UAV controller in Secs. III–V is based on
a theorem presented in Ref. 34. For completeness and ease of ref-
erence, that theorem is reviewed in Sec. II. The resulting controller
and its stability properties are summarized in Sec. VI. A specific
approximator structure that will be used in the subsequent simula-
tion example is defined in Sec. VII. The simulation example is in
Sec. VIII. Tables C1–C3 in Appendix C define the notation used in
the body of this paper.

II. Review of an Existing Stability Result
Sections III–V will use a stability result that was first presented

in Ref. 34 to derive a provably stable online approximation-based
backstepping controller suitable for an UAV. Because those stability
results will be used iteratively, it is reviewed first in this section.

A. Problem Formulation
Let x1 ∈ �n1 , x2 ∈ �n2 , and u ∈ �m , with m ≥ n2. Consider the

system

ẋ1 = A1(x) f1(x) + B1(x)G1(x1)x2 (1)

ẋ2 = A2(x) f2(x) + B2(x)G2(x)u (2)

where x = [x�
1 , x�

2 ]�, and for i = 1, 2, Ai (x) and Bi (x) are known
matrices, and fi (x) and Gi (x) are unknown vector and matrix func-
tions with row dimension denoted by pi . Assume that B2(x)G2(x)
has full row rank for any x ∈D, where D is a compact domain of
operation. For convenience of notation, we will assume that B2 is
square. This implies that B2(x) must be invertible on D for the full
rank assumption to hold. Also, assume that the desired trajectory
x1c(t) and its derivative ẋ1c(t) are known and that x1c(t) ∈D for all
t ≥ 0.

The system (1) and (2) allows consideration of systems where
unknown functions affect several states. For example, as described
in Secs. III–V, for aircraft control Ai (x) and Bi (x) represent rotation
matrices, and f1 and f2 represent the vectors of aerodynamic forces
and moments. The represented system also allows consideration of
applications where a vector of state variables x2 from an inner loop
is used to control a vector of state variables x1 from an outer loop.

Define the tracking error signals

x̃i = xi − xic for i = 1, 2 (3)

where x2c will be defined subsequently. Also, define approximations
to the unknown functions:

f̂i (x) = θ T
fi
�Fi (x), θ T

fi
∈ �pi × N fi , � fi (x) : �n �→ �N fi

Ĝi j (x) = θ T
Gi j

�Gi j (x), θ T
Gi j

∈ �pi × NGi j , �Gi j (x) : �n �→ �NGi j

where Ĝi j (x) represents the j th column of Ĝi . We assume that there
exist unknown vectors θ∗

fi
and θ∗

Gi j
such that fi (x) = (θ∗

fi
)T �Fi (x)

and Gi j (x) = (θ∗
Gi j

)T �Gi j (x). Then the approximator parameter er-
rors are

θ̃ fi = θ fi − θ∗
fi

(4)

θ̃Gi j = θGi j − θ∗
Gi j

(5)

The procedure and theorem that follow extend backstepping to
allow stable online approximation of nonlinear functions while the
system being controlled is subject to physical constraints on the
intermediate states x2 and the actuator signals u. Similar to standard
backstepping, we will first consider tracking control for the simpler
system

ẋ1 = A1(x) f1(x) + B1(x)G1(x1)µ1 (6)

Then, we will consider the design of the signal u for the origi-
nal system of (1) and (2), where x2 implements µ1 within a stable
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closed-loop system. The following assumption is used to initialize
the procedure.

Assumption 1: There exists an online approximation-based con-
trol law µ1(x, x1c, ẋ1c, θ f 1, θG1 j ) with positive-definite gain matrix
K1 and parameter update laws

θ̇ f 1 = α1(x, x̃1) (7)

θ̇Gi j = β1 j (x, x̃1, µ1) (8)

such that the Lyapunov function

V1 = 1

2

[
x̃ T

1 x̃1 + trace
(
θ̃ T

f1
�−1

f1
θ̃ f1

) +
n2∑

j = 1

trace
(
θ̃ T

G1 j
�−1

G1 j
θ̃G1 j

)]

with � f1 and �G1 j positive definite, when evaluated along the tra-
jectories of the closed loop system of Eq. (6), has

V̇1 = ∂V1

∂ x̃1
(A1 f1 + B1G1µ1) + ∂V1

∂θ̃ f1

α1(x, x̃1)

+
n2∑

j = 1

∂V1

∂θG1 j

β1 j (x, x̃1, µ1) ≤ −x̃ T
1 K1 x̃1

B. State and Actuator Constraint Compensation Procedure
The purpose of this section is to extend the backstepping approach

in two directions. The first direction of extension uses command fil-
ters to eliminate the analytic computation of the time derivative of
µ1 that would be required for a standard backstepping implemen-
tation. Although the analytic differentiation is possible, it becomes
tedious as the number of iterations of the backstepping approach
increases and when parameter adaptation is involved. A command
filter with outputs x2c and ẋ2c will be designed as a linear, stable,
low-pass filter with unity gain from its input to x2c at low frequen-
cies. In this command filtered approach, in the absence of physical
limitations (i.e., magnitude, rate, and bandwidth constraints on the
intermediate state x2 and control u), we can prove convergence of
the tracking errors in the sense of Lyapunov. The second direction of
extension is to ensure stability of the online function approximation
(i.e., parameter estimation) process even when physical limitations
are in effect. Note that when such physical constraints are in effect,
the tracking error can increase because the necessary control sig-
nal to achieve tracking cannot be implemented within the physical
constraints imposed on the system. The requested trajectory is too
aggressive for the vehicle. In this circumstance, our goal is to main-
tain the stability of the online function approximation process. In
our approach, we use the command filter to ensure that the com-
manded state x2c does not leave the safe operating envelope defined
a priori for the vehicle.

Assumption 1 is directly applicable to the simplified system of
Eq. (6): however, for the actual system of Eqs. (1) and (2), backstep-
ping approaches use the intermediate state x2 to implement the con-
trol signal µ1. When the control signal µ1 is implemented by x2 and
the state and actuators have physical limitations, such approaches
might not be able to be successfully implemented in a direct fashion.
To address magnitude, rate, and bandwidth constraints on the state
and control, define the following procedure34:

1) Define

xo
2c = µ1 − ξ2 (9)

where ξ2 is defined subsequently. Then, filter xo
2c to produce the

magnitude, rate, and bandwidth-limited command signal x2c and its
derivative ẋ2c that are within the vehicle operating envelope D (see
Appendix A). Then define

ξ̇1 = −K1ξ1 + B1Ĝ1

(
x2c − xo

2c

)
(10)

Note that this is a stable linear filter with input Ĝ1(x2c − xo
2c).

Theorem 1 provides the boundedness of Ĝ1, and the boundedness

of (x2c − xo
2c) is discussed in Appendix A; therefore, as the output

of a stable linear system with a bounded input, the signal ξ1(t) is
bounded.

2) Define the compensated tracking errors as

x̄i = x̃i − ξi for i = 1, 2 (11)

3) Define any continuous signal uo
c such that

B2Ĝ2uo
c = −K2 x̃2 + ẋ2c − A2 f̂2(x) − ĜT

1 BT
1 x̄1 (12)

In the case where G2 has more columns than rows, more than one
solution can exist.

4) Filter uo
c to produce u that is within the magnitude, rate,

and bandwidth limitations of the actuation system. Therefore, u
is achievable by the actuators. Then define

ξ̇2 = −K2ξ2 + B2Ĝ2

(
u − uo

c

)
(13)

By discussion similar to that following Eq. (10), the signal ξ2(t) is
bounded.

5) Define the parameter update laws according to

θ̇ f1 = α1(x1, x̄1), θ̇ f2 = � f2� f2 x̄ T
2 A2 (14)

θ̇G1 j = β1(x1, x̄1, x2), θ̇G2 j = �G2 j �G2 j x̄
T
2 u j B2 (15)

Note that functions α1, β1, and µ1 satisfying assumption 1 are
inputs to this procedure. The function µ1 is used in the computation
of xo

2c in Eq. (9). The arguments to the functions α1 and β1 are altered
in Eqs. (14) and (15) to attain robustness of the parameter estimation
process to actuator and state constraints.

The filters in Eqs. (10) and (13) estimate the effect on the track-
ing error due to implementing the achievable control signal instead
of the desired control signal. The compensation of the tracking er-
ror in the computation of x̄i for i = 1, 2 is similar to the method
of TSH as suggested in Refs. 32 and 36 for actuator constraints.
Additionally, the modification of the command µ1 by ξ2 to produce
xo

2c is similar to the method of PCH as suggested in Refs. 35 and
37 for actuator constraints. The preceding method extends the TSH
and PCH methods to fit within a recursive backstepping procedure
while enforcing state and actuator constraints. The command filters
produce the commands and their first derivatives without differentia-
tion. This method of generating the command derivatives also allows
the method to be used for (stabilizable) nontriangular systems.

C. State and Actuator Constraint Stability Result
Given the preceding procedure, the following stability result was

proved in Ref. 34.
Theorem 1: Given a system described as Eqs. (1) and (2), let α1,

β1, and µ1 be selected such that assumption 1 is true. Then the on-
line approximation-based controller of Eqs. (9–15), with physical
constraints, solves the tracking problem with the following prop-
erties: 1) x̄1, x̄2, θ f1 , θ f2 , θG1 , θG2 ∈L∞; 2) x̄1 and x̄2 ∈L2; and
3) limt → ∞ x̄1(t) = 0; and, limt → ∞ x̄2(t) = 0. Note that this theo-
rem can be applied recursively (r − 1) times to address a system
with r state blocks. The objective of this paper is to apply this theo-
rem recursively to derive a controller for an UAV subject to model
error, faults, battle damage, and state and/or actuator limitations.

Aircraft dynamics are derived and discussed in several references,
for example, Refs. 46 and 47. For convenience of the reader, the final
equations (and aircraft notation and parameters) are summarized in
Appendix B. The controller will be implemented by viewing the
aircraft dynamics as having three sets of states: airspeed and flight-
path angles (χ, γ, V ), wind-axis angles (µ, α, β), and angular rates
(P, Q, R). Online approximation-based control of the airspeed and
flight-path angles will be addressed first to establish the control
signal µ1 required to satisfy assumption 1. Then, the wind-axis
and angular-rate loops will each be addressed by recursive applica-
tions of theorem 1. The control laws, error dynamics, and parameter
adaptation laws are derived in Secs. III–V. The control law and its
stability properties are summarized in Sec. VI. The structure of the
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online approximators are defined in Sec. VII. Section VIII contains
a simulation example and discussion of the controller properties.

III. Airspeed and Flight-Path-Angle Control
Let the state vector z1 be defined by z1 = [χ, γ, V ]T . To initiate the

constrained backstepping process of Sec. II, we need a control law
that stabilizes the z1 tracking error dynamics in the sense described
by assumption 1. We assume that the command signals (χc, γc, Vc)
and their derivatives are available, bounded, and continuous. [If the
external command generation system only provides the bounded
command signals (χ o

c , γ o
c , V o

c ), but fails to provide the required
derivatives, then signals (χc, γc, Vc) and their derivatives (satisfying
the preceding assumptions) can be generated without differentiation
by a command filter such as that shown in Appendix A.] The air-
speed will be controlled via the thrust. The flight-path angles will be
controlled through the wind-axis angles; therefore, µ�

1 = [µ, α, T ].
The airspeed and flight-path-angle dynamics of Eqs. (73a–73c)

can be represented as

ż1 = Ā1 f1 + F1 + G1(µ1, x) (16)

with

Ā1 = 1

mV


sin β cos µ/ cos γ cos β cos µ/ cos γ 0

− sin β sin µ cos β sin µ 0

−V cos(β) V sin(β) 0




F1 =




−T cos α sin β cos µ
1

mV cos γ

(T cos α sin β sin µ − mg cos γ )
1

mV

−g sin γ




µ1 =


µ11

µ12

µ13


 , f1(x) =


D(x)

Y (x)

L(x)




and

G1(µ1, x) =


uχ

uγ

uV


 =




g
(
µ12 , x

)
sin µ11

mV cos γ

g
(
µ12 , x

)
cos µ11

mV

cos β cos µ12

m
T




(17)

where

g
(
µ12 , x

) = L
(
µ12 , x

) + T sin µ12 (18)

L
(
µ12 , x

) = Lo(x) + Lα(x)µ12 (19)

The drag, lift, and side-force functions that are used in the definitions
of f1, Lo(x), and Lα(x) are unknown. The function F1 is known.

We select the control signal µ1, with K1 positive definite, so that
the following equation is satisfied:

Ĝ1(µ1, x) = − Ā1 f̂1 − F1 + ż1c − K1 z̃1 (20)

where f̂ �
1 = [D̂(x), Ŷ (x), L̂(x)] and

Ĝ1 =




ĝ
(
µ12 , x

)
sin µ11

mV cos γ

ĝ
(
µ12 , x

)
cos µ11

mV

cos β cos µ12

m
T




(21)

with ĝ(µ12 , x) = [L̂(µ12 , x) + T sin µ12 ]. The functions [D̂(x),
Ŷ (x), L̂(x)] are approximations to [D(x), Y (x), L(x)]. The effect
of the error between these functions is considered in the analysis of
Sec. IV.A.

The value of the vector µ1 in the left-hand side of Eq. (20) must
be determined, as it serves as the input to the next loop. Because all
quantities in the right-hand side of Eq. (20) are known, the value of
Ĝ1(µ1, x) can be computed at any time instant. The purpose of the
following paragraph is to discuss the solution of Eq. (21) for µ1.
Note that µ11 = µo

c and µ12 = αo
c are the roll-angle and angle-of-

attack commands. Also, to decrease the complexity of the notation,
we will use the notation ĝ(αo

c ) instead of ĝ(µ12 , x). Finally, for
complete specification of the desired wind-axis state, we will always
specify βo

c as zero.
Defining (X, Y ) such that the first two rows of Eq. (21) can be

written as

X ≡ cos(γ )mV uχ = ĝ
(
αo

c

)
sin

(
µo

c

)
(22)

Y ≡ mV uγ = ĝ
(
αo

c

)
cos

(
uo

c

)
(23)

we can interpret (X, Y ) as rectangular coordinates for a point with
(signed) radius ĝ(αo

c ) and angle µo
c relative to the positive Y axis.

Because the force ĝ(αo
c ) can be either positive or negative, there

are always two possible solutions, as depicted in Figs. 1a and 1b.
Switching between the two possible solutions requires µo

c to change
by 180 deg as ĝ(αo

c ) reverses its sign. When ĝ(αo
c ) reverses its sign,

the point (X, Y ) passes through the origin, which is an instantaneous
loss of controllability. If ĝ(αo

c ) is selected to be positive for a suffi-
ciently aggressive diving turn (i.e., χ̇c and γ̇c both large), then the
maneuver would be performed with the aircraft inverted (i.e., roll

a) The (αo
c , µo

c ) solution with positive lift

b) The (αo
c , µo

c ) solution with negative lift

Fig. 1 Two possible choices for αo
c and µo

c to solve the (χ, γ) control.
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greater than 90 deg). When choosing (µo
c , α

o
c ) to satisfy Eq. (21),

the designer should only allow ĝ(αo
c ) to reverse its sign when ûo

χc is
near zero. If the sign of g(α) reversed while ûo

χc was nonzero, then
µo

c would also need to change so that [sin(µo
c), cos(µo

c)] would have
the correct signs to attain the desired control signals. This change is
a 180-deg roll reversal.

Once µo
c and αo

c have been specified, the third equation of Eq. (21)
can be directly solved for T .

IV. Wind-Axis Angle Control
Let z1 be as defined in Sec. III. Define z2 = [µ, α, β]T . Then the

combined (z1, z2) dynamics are

ż1 = Ā1(x) f1 + F1(x) + G1(z2, x, T ) (24)

ż2 = A2(x) f1 + F2(x) + B2µ2 (25)

where

B2 =




cos α

cos β
0

sin α

cos β

− cos α tan β 1 − sin α tan β

sin α 0 − cos α


 , A2 = 1

mV


sin β cos µ tan γ cos β cos µ tan γ (tan β + tan γ sin µ)

0 0 −1/ cos β

sin β cos β 0




F2 = 1

mV




(sin α tan γ sin µ + sin α tan β − cos α tan γ cos µ sin β)T − mg cos γ cos µ tan β

[−T sin α + mg cos γ cos µ]
1

cos β

−T sin β cos α + mg cos γ sin µ




are known functions and µ�
2 = [P, Q, R]. Note that the (z1, z2) dy-

namics are not triangular because Ā1, f1, F1 all depend on z2. Never-
theless, the command filtered backstepping approach is applicable.

Let zo
2c

=µ1 with µ1 as defined in Sec. III to satisfy Eqs. (20)
and (21). Pass zo

2c
through a command filter (see Appendix A) to

produce the magnitude, rate, and bandwidth-limited signals z2c and
ż2c . Define z̄1 = z̃1 − ξ1, where the variable ξ1 is the output of the
filter

ξ̇1 = −K1ξ1 + [
Ĝ1(z2, x) − Ĝ1

(
zo

2c
, x

)]
(26)

As discussed in Sec. II.B, the signal ξ1(t) is bounded. Select µo
2c

such that

B2µ
o
2c

= −K2 z̃2 + ż2c − A2 f̂1 − F2 (27)

with K2 positive definite. Equation (27) can always be satisfied
because B2 is well defined and nonsingular (for β �= ±90 deg). Pass
µo

2c
through a filter, such as that shown in Fig. 2, to produce µ2c and

µ̇2c . Define z̄2 = z̃2 − ξ2, where the variable ξ2 is the output of the
filter

ξ̇2 = −K2ξ2 + B2

(
µ2c − µo

2c

)
(28)

Fig. 2 Filter that generates the command and command derivative while enforcing magnitude, bandwidth, and rate limit constraints.

A. Tracking Error Dynamics
Given the definitions of the preceding section, the dynamics

of the z1 and z2 tracking errors can be derived. Starting from
Eq. (24),

˙̃z1 = Ā1 f1 + F1 + Ĝ1(µ1, x) − ż1c + [G1(z2, x) − Ĝ1(z2, ẋ)]

+ [Ĝ1(z2, x) − Ĝ1(µ1, x)]

= −K1 z̃1 − Ā1 f̃1 + [G1(z2, x) − Ĝ1(z2, x)]

+ [Ĝ1(z2, x) − Ĝ1(µ1, x)]

= −K1 z̃1 − A1 f̃1 + [Ĝ1(z2, x) − Ĝ1(µ1, x)] (29)

where f̃ (x) = f̂ (x) − f (x) and algebraic manipulations result in
A1 f̃1 = Ā1 f̃1 − [G1(z2, x) − Ĝ1(z2, x)] with

A1 = 1

mV




sin β cos µ/ cos γ cos β cos µ/ cos γ
sin µ

cos γ

− sin β sin µ cos β sin µ cos µ

−V cos(β) V sin(β) 0




(30)

The tracking error dynamics for z2 are

˙̃z2 = A2 f1 + F2 + B2µ
o
2c

− ż2c + B2

(
µ2 − µo

2c

)

= −K2 z̃2 − A2 f̃2 + B2

(
µ2 − µo

2c

)
(31)

Combining Eqs. (26) and (28), respectively, with Eqs. (29) and (31),
the dynamics of the compensated tracking errors are

˙̄z1 = −K1 z̃1 − A1 f̃1 + [Ĝ1(z2, x) − Ĝ1(µ1, x)]

− {−K1ξ1 + [
Ĝ1(z2, x) − Ĝ1

(
zo

2c
, x

)]}

= −K1 z̄1 − A1 f̃1 (32)
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˙̄z2 = −K2 z̃2 − A2 f̃2 + B2

(
µ2 − µo

2c

)
− [−K2ξ2 + B2

(
µ2c − µo

2c

)]
= −K2 z̄2 − A2 f̃2 (33)

Equations (32) and (33) are in the form that is required to prove the
desired stability properties.

B. Online Approximation and Stability Analysis
Let the parameter update be defined by

θ̇ f1 = � f1� f1

(
z̄T

1 A1 + z̄T
2 A2

)
(34)

Define the Lyapunov function

V1 = 1
2

[
z̄T

1 z̄1 + z̄T
2 z̄2 + trace

(
θ̃ T

f1
�−1

f1
θ̃ f1

)]
(35)

The time derivative of V1 along solutions of Eqs. (32) and (33) is
given by

V̇1 = z̄T
1
˙̄z1 + z̄T

2
˙̄z2 + trace

(
θ̃ T

f1
�−1

f1
˙̃
θ f1

)
= −z̄T

1 K1 z̄1 − z̄T
2 K2 z̄2 ≤ 0 (36)

This completes the first step in the recursive application of the
methodology of Sec. II. Minor extensions to the method of that
section were required because µ1 appears in a nonlinear fashion in
Eq. (20). Note that the stability analysis is not yet complete, and the
next section directly applies Theorem 1, to complete the control de-
sign. The stability analysis is concluded in Sec. VI and summarized
in Theorem 2.

V. Body-Axis Angular Rate Control
Given the results of the preceding section, we are now in a position

to design the angular-rate control law using Theorem 1. To do so,
let x1 = [zT

1 , zT
2 ]T , and let x2 = [P, Q, R]T . The dynamics can be

written as

ż1 = Ā1(x) f1 + F1(x) + G1(z2, x, T )

ż2 = A2(x) f1 + F2(x) + B2(x)z3

ż3 = A3 f3 + F3(x) + B3G3δ

where

B3 = A3 =


c3 0 C4

0 c7 0

c4 0 c9




are known matrices,

F3 =


 (c1 R + c2 P)Q

c5 P R − c6(P2 − R2)

(c8 P − c2 R)Q




is a known function, and

f3 =


 L̄ ′

M̄ ′

N̄




and

G3 =


 L̄δ1 · · · L̄δG

M̄δ1 · · · M̄δ6

N̄δ1 · · · N̄δG




are unknown functions, and

δ =




δ1

...

δ6




is the control signal. For convenience of representation of the control
surface effectiveness matrix, the moment functions are decomposed
as

L̄ = L̄ ′ +
m∑

i = 1

L̄δi δi , M̄ = M̄ ′ +
m∑

i = 1

M̄δi δi

and

N̄ = N̄ ′ +
m∑

i = 1

N̄δi δi

To specify the angular-rate control signal, we define

xo
3c = µo

2c − ξ3 (37)

Pass xo
3c

through a filter, such as that shown in Fig. 2, to produce
x3c and ẋ3c , which are magnitude, rate, and bandwidth limited. To
accommodate the additional inner control loop, we change the def-
inition of ξ2 from Eq. (28) to

ξ̇2 = −K2ξ2 + B2

(
z3c − zo

3c

)
(38)

To achieve tracking of z3c by z3, select continuous δo
c such that

B3Ĝ3δ
o
c = −A3 f̂3 − F3 − K3 z̃3 + ż3c − BT

2 z̄2 (39)

with K3 positive definite. When the aircraft is overactuated, the
matrix B3Ĝ3 will have more columns than rows and will have full
row rank. Therefore, many solutions to Eq. (39) exist, and some
form of actuator distribution48,49 is required to select δo

c .
We pass δo

c through a filter, such as that shown in Fig. 2, to produce
δ, which is within the magnitude, rate, and bandwidth limitations
of the actuation system. [Alternatively, if the surface deflection is
measured, then the signal δo

c could be used as the commanded surface
positions, and the measured surface deflection vector δ can be used
directly to calculate ξ3. No change is required in the notation of
Eq. (40). This is the method that will be used in the simulation
example of Sec. VIII.] The signal ξ3 is the output of the filter

ξ̇3 = −K3ξ3 + B3Ĝ3

(
δ − δo

c

)
(40)

Define z̄3 = z̃3 − ξ3.

A. Tracking Error Dynamics
The tracking error and compensated tracking error dynamics for

z1 are still given by Eqs. (29) and (32) because the definitions of
z2c ,µ1, and ξ1 have not changed.

Because the state z3 is used to implement µ2c , the tracking error
dynamics for z2 become

˙̃z2 = A2 f1 + F2(x) + B2zo
3c

− ż2c + B2

(
z3 − z3c

) + B2

(
z3c − zo

3c

)
= A2 f1 + F2(x) + B2µ

o
2c

− B2ξ3 − ż2c

+ B2

(
z3 − z3c

) + B2

(
z3c − zo

3c

)
= −K2 z̃2 + B2 z̃3 − B2ξ3 − A2 f̃1 + B2

(
z3c − zo

3c

)
= −K2 z̃2 + B2 z̃3 − A2 f̃1 + B2

(
z3c − zo

3c

)
(41)

Combining Eqs. (38) and (41), the compensated tracking error dy-
namics for z2 are

˙̄z2 = −K2 z̄2 − A2 f̃1 + B2 z̄3 (42)

The tracking error dynamics for z3 are

˙̃z3 = A3 f3 + F3(x) + B3Ĝ3δ
o
c − ż3c

+ B3Ĝ3

(
δ − δo

c

) + B3(G3 − Ĝ3)δ

= −K3 z̃3 − A3 f̃3 + B3G̃3δ + B3Ĝ3

(
δ − δo

c

) − BT
2 z̄2 (43)

where f̃3 = f̂3 − f3 and G̃3 = Ĝ3 − G3. The compensated tracking
error dynamics for z3 are

˙̄z3 = −K3 z̄3 − A3 f̃3 − B3G̃3δ − BT
2 z̄2 (44)
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B. Online Approximation and Stability Analysis
Let the moment function parameter adaptation laws be

˙̃
θ f3 = θ̇ f3 = � f3� f3

(
z̄T

3 A3

)
(45)

˙̃
θG3 j = θ̇G3 j = �G3 j �G3 j

(
z̄T

3 δ j B3

)
(46)

Define the Lyapunov function

V = 1

2

[ 3∑
i = 1

z̄T
i z̄i + trace

(
θ̃ T

f1
�−1

f1
θ̃ f1

) + trace
(
θ̃ T

f3
�−1

f3
θ̃ f3

)

+
m∑

j = 1

trace
(
θ̃ T

G3 j
�−1

G3 j
θ̃G3 j

)]
(47)

The time derivative of V along solutions of the closed-loop compen-
sated tracking error dynamics defined by Eqs. (32), (42), and (44)
is

V̇ = z̄T
1
˙̄z1 + z̄T

2
˙̄z2 + z̄T

3
˙̄z3 + trace

(
θ̃ T

f1
�−1

f1
˙̃
θ f1

) + trace
(
θ̃ T

f3
�−1

f3
˙̃
θ f3

)

+
m∑

j = 1

trace
(
θ̃ T

G3 j
�−1

G3 j

˙̃
θG3 j

)

= −z̄T
1 K1 z̄1 − z̄T

2 K2 z̄2 − z̄T
3 K3 z̄3 ≤ 0. (48)

Equation (48), which shows that V̇ is negative semidefinite, will be
used in Sec. VI to prove the stability properties of the UAV online
approximation-based controller.

VI. Control Law and Stability Properties
This section summarizes in an organized fashion the control law

implementation equations that are distributed throughout the pre-
ceding sections and summarizes the stability properties that apply.

For the input signals z1c and ż1c the control law is given by the
following:

1) Select the control signals µ1 so that

Ĝ1(µ1, x) = −K1 z̃1 + ż1c − Ā1 f̂1 − F1 (49)

where z̃1 = z1 − z1c . Define zo
2c

=µ1. Filter zo
2c

to enforce magni-
tude, rate, and bandwidth constraints appropriate for (µ, α, β) and
to produce as outputs the signals z2c and ż2c .

2) Select µo
2c

such that

B2µ
o
2c

= −K2 z̃2 + ż2c − A2 f̂1 − F2 (50)

where z̃2 = z2 − z2c . Because B2 is square and invertible, this solu-
tion is unique and straightforward. Define zo

3c
= µo

2c
− ξ3. Filter zo

3c
to enforce magnitude, rate, and bandwidth constraints appropriate
for the variables (P, Q, R) and to produce as outputs the signals z3c

and ż3c .
3) Select δo

c such that

B3Ĝ3δ
o
c = −K3 z̃3 + ż3c − A3 f̂3 − F3 − BT

2 z̄2 (51)

where z̃3 = z3 − z3c . If m > 3, then the system is overactuated, and
some form of actuator distribution process will be required. This
actuator distribution can be used to limit the extent and rate of the
commanded actuator deflections.

4) Implement the following bank of filters to compute ξi for
i = 1, 2, 3:

ξ̇1 = −K1ξ1 + Ĝ1(z2, x) − Ĝ1

(
zo

2c
, x

)
(52)

ξ̇2 = −K2ξ2 + B2

(
z3c − zo

3c

)
(53)

ξ̇3 = −K3ξ3 + B3Ĝ3

(
δ − δo

c

)
(54)

The controller includes online approximation of the unknown force
and moment functions using the following parameter estimation

equations:

θ̇ f1 = � f1φ f1

(
z̄T

1 A1 + z̄T
2 A2

)
(55)

θ̇ f3 = � f3φ f3

(
z̄T

3 A3

)
(56)

θ̇G3 j = �G3 j φG3 j

(
z̄T

3 δ j B3

)
for j = 1, . . . , m (57)

Such online approximators are especially useful on UAVs, where
the aerodynamics can change during flight, for example, because
of battle damage. For the controller just summarized, the following
theorem summarizes the stability properties.

Theorem 2: Assuming that the functions φ f1 , φ f3 , and φG3 j are
bounded, the online approximation-based controller summarized in
Eqs. (49–57) has the following properties:

1) The estimated parameters θ f1 , θ f3 , θG3 j and parameter errors
θ̃ f1 , θ̃ f3 , θ̃G3 j are bounded.

2) The compensated tracking errors z̄1, z̄2, and z̄3 are bounded.
3) ‖z̄i (t)‖ → 0 as t → ∞ for i = 1, 2, 3.
4) z̄i (t) ∈L2 for i = 1, 2, 3.
Proof: Boundedness of the parameter errors is because V is posi-

tive definite in the parameter errors and dV/dt is negative semidef-
inite [see Eq. (48)]. Therefore, V(t) ≤V(0) for t > 0. This implies
that for any t > 0,

trace
(
θ̃ T

f1
�−1

f1
θ̃ f1

) + trace
(
θ̃ T

f3
�−1

f3
θ̃ f3

)

+
m∑

j = 1

trace
(
θ̃ T

G3 j
�−1

G3 j
θ̃G3 j

) ≤ V(0) < ∞

This completes the proof of item 1. The boundedness of the compen-
sated tracking errors is shown similarly. The second time derivative
of the Lyapunov function is

d2V
dt2

= −z̄T
1

(
K1 + K T

1

)
(−K1 z̄1 − A1 f̃1)

− z̄T
2

(
K2 + K T

2

)
(−K2 z̄2 − A2 f̃1 + B2 z̄3 − K3 z̄3)

− z̄T
3

(
K3 + K T

3

)(−K3 z̄3 − A3 f̃3 − B3Ĝδ − BT
2 z̄2

)
which is bounded. Therefore, the function dV/dt is uniformly con-
tinuous. Barbalat’s lemma (p. 123 in Ref. 50) implies that dV/dt →
0 as t → ∞. This requires that z̄T

i Ki z̄i → 0 for i = 1, 2, 3 as t → ∞,
and because z̄T

i Ki z̄i ≥ λ(Ki )‖z̄i‖2, where λ(Ki ) is the minimum
eigenvalue of the positive-definite matrix Ki ; we see that ‖z̄i‖2 → 0
as t → ∞ for i = 1, 2, 3. This completes the proof of item 3.

Integrating both sides of Eq. (48) yields

V(t) − V(0) ≤
∫ t

0

−z̄T
i (τ )Ki z̄i (τ ) dτ (58)

−V(0) ≤ −
∫ ∞

0

z̄T
i (τ )Ki z̄i (τ ) dτ (59)

V(0) ≥
∫ ∞

0

z̄T
i (τ )Ki z̄i (τ ) dτ (60)

where 0 ≤V(t) ≤V(0) for all t ≥ 0 and dV/dt ≤ 0 implies that
limt → ∞ V(t) is well defined. This completes the proof of item 4. �

Remark 1: The third property is particularly interesting. It states
that the compensated tracking errors z̄i approach zero as time ap-
proaches infinity, regardless of the input signals (χ o

c , γ o
c , V o

c ). No
similar statement can be made for the standard tracking errors z̃i .
During periods when the inputs are too aggressive, magnitude, rate,
or bandwidth limits can come into effect. With such limits in ef-
fect, it is not possible to track the input because the desired control
signals are not able to be implemented; therefore, z̃i will become
nonzero. The control commands not being implementable causes
the ξi signals to become nonzero. As discussed in the body of the
paper, the ξi signals do remain bounded. The ξi signals compensate
the tracking errors so that online approximation can still occur us-
ing the z̄i variables. When the limits are no longer in effect, the ξi

variables converge to zero, and z̃i converges toward z̄i .



1096 FARRELL, SHARMA, AND POLYCARPOU

Remark 2: If a nominal design model were known and used to
define the functions f̂1, f̂2, and f̂3, then the preceding controller
can be used without online approximation. The stability and track-
ing performance would be affected by the errors between the de-
sign model and the actual system as indicated in the tracking error
equations (32), (42), and (44). In fact, if the command filters were
replaced by analytic computation of the command derivatives with-
out rate and magnitude limits, then the ξi filters could be removed
[i.e., ξi (t) = 0]. The remaining controller would be a backstepping
controller for the aircraft. We mention this only to point out that the
approximation-based approach can be considered as a retrofit to a
baseline nominal controller designed by the backstepping method.
The retrofit would add in command filtering, online approximation,
and the ξ filters. The retrofit would ensure that the intermediate com-
mands remain in the specified operating envelope (because of the
command filters) and would attain both stability and performance
robustness to model error (because of the online approximation).

VII. Approximator Definition
The aircraft dynamics involve three moments (L̄, M̄, N̄ ) and

three forces (D, Y, L). In the simulation example to follow, the
approximations to these functions will be implemented using the
nondimensionalized coefficient notation that is standard in the air-
craft literature. Each of the coefficient functions C∗ is an un-
known function that is implemented as C∗(α, M) = θ T

∗ φ(α, M)
[e.g., CDo (α, M) = θ T

Do
φ(α, M)], where φ(α, M) is a regressor vec-

tor that is selected by the designer and θ∗ is estimated online. M is
the Mach number. Note that different regressors can be used for
the different functions. This paper uses a single regressor vector
φ(α, M) for all the approximations for notational simplicity. The
elements of the regressor vector are third-order cardinal B splines
defined on a grid of knot locations. The α knots were spaced every
2 deg over [−10, 20] deg. The Mach knots were spaced every 0.2
over [0.2, 0.8].

The drag approximator is

D̂ = q̄ S

(
CDo +

m∑
i = 1

CDδi
δi

)
= �Dθ T

Dφ (61)

The matrix θD = [θDo , θDδ1
, . . . , θDδβ

] contains in each column the
parameter vector used to approximate one of the coefficient func-
tions, for examples CDδi

( ) = θ T
Dδi

φ( ), where φ( ) is the vector of
basis elements. The factor �D = q̄ S[1, δ1, . . . , δm] is a scaling factor
q̄ S times a signal vector. Similarly, for the other forces and moments,

Ŷ = q̄ S

(
CYo + CYβ

β + CYP

bP

2V
+

m∑
i = 1

CYδi
δi

)
= �Y θ T

Y φ (62)

L̂ = q̄ S

(
CLo + CLα

α +
m∑

i = 1

CLδi
δi

)
= �Lθ T

L φ (63)

ˆ̄L = q̄ Sb

(
CL̄o

+ CL̄ P

bP

2V
+ CL̄ R

bR

2V
+ CL̄β

β +
m∑

i = 1

CL̄δi
δi

)

= �L̄θ T
L̄
φ (64)

ˆ̄M = q̄ Sc̄

(
CM̄o

+ CM̄Q

c̄Q

2V
+

m∑
i = 1

CM̄δi
δi

)
= �M̄θ T

M̄
φ (65)

ˆ̄N = q̄ Sb

(
CN̄o

+ CN̄P

bP

2V
+ CN̄R

bR

2V
+ CN̄β

β +
m∑

i = 1

CN̄δi
|δi |

)

= �N̄ θ T
N φ (66)

with

�Y = q̄ S[1, β, bp/2V , δ1, . . . , δm]

θY = [
θYo , θYβ

, θYP , θYδ1
, . . . , θYδm

]

�L = q̄ S[1, α, δ1, . . . , δm], θL = [
θLo , θLα

, θLδ1
, . . . , θLδm

]

�L̄ = q̄ Sb[1, bP/2V , bR/2V , β, |δ1|, . . . , |δm |]

θL̄ = [
θL̄o

, θL̄ P
, θL̄ R

, θL̄β
, θL̄δ1

, . . . , θL̄δm

]
�M̄ = q̄ Sc̄[1, c̄Q/2V , δ1, . . . , δm]

θM̄ = [
θM̄o

, θM̄Q
, θM̄δ1

, . . . , θM̄δm

]
�N̄ = q̄ Sb[1, bp/2V , bR/2V , β, |δ1|, . . . , |δm |]

θN̄ = [
θN̄o

, θN̄P
, θN̄R

, θN̄β
, θN̄δ1

, . . . , θN̄δm

]
Each of θD, θY , θL , θL̄ , θM̄ , and θN̄ is a matrix of unknown
parameters.

Each of Eqs. (61–66) is linear with respect to the its matrix of
unknown parameters; therefore, each approximator can be rewritten
into the standard vector form

D̂ = �T
D�D, Ŷ = �T

Y �Y , L̂ = �T
L �L (67)

ˆ̄L = �T
L̄
�L̄ , ˆ̄M = �T

M̄
�M̄ , ˆ̄N = �T

N̄
�N̄ (68)

which is compatible with the approximator form used throughout
the preceding sections of this paper. Therefore, the approximator
parameters can be adapted according to Eqs. (55–57).

VIII. Simulation Analysis
This section presents simulation results from the application of

the control algorithms developed in the preceding sections to the
Barron Associates Nonlinear Tailless Aircraft Model (BANTAM),
which is a nonlinear six-degree-of-freedom model of a flying-wing
UAV. BANTAM was developed primarily using Ref. 51, which con-
tains aerodynamic data from wind-tunnel testing of several flying-
wing planforms, but also using analytical estimates of dynamic sta-
bility derivatives from DATCOM and HASC-95. The flying-wing
airframe is particularly challenging to control because it is statically
unstable at low angles of attack and possesses a restricted set of con-
trol effectors that provide less yaw authority than the traditional set
used on tailed aircraft. The control surfaces consist of two pairs of
body flaps mounted on the trailing edge of the wing. Additionally,
a pair of spoilers is mounted upstream of the flaps. This configura-
tion generally relies upon the flaps for pitch and roll authority and
the spoilers for yaw and drag. The simulation model also contains
realistic actuator models for the control effectors with second-order
dynamics and both position and rate limits. The body-flap actuators
have 40-rad/s bandwidth with ±30-deg position limits and ±90-
deg/s rate limits. The spoiler actuators are identical, except that they
can only be deflected upward and their motion is limited to 60 deg.

To illustrate the performance and robustness to model error of the
control laws developed herein, the aircraft is commanded to perform
doublets in both flight-path and heading angles simultaneously while
holding constant airspeed and regulating sideslip to zero, that is,
coordinated turns. This set of commands is relatively challenging
for the autopilot because it induces significant amounts of coupling
between all three channels and requires flight at high roll angles. The
control parameter settings for this example and design guidelines
for their selection are discussed in Sec. IX. The initial values for the
approximator parameters �D, �L , �Y , �L̄ , �M̄ , �N̄ do not match
the optimal values; therefore, at the start of the simulation online
approximation is required to maintain stable flight. The extent of
the initial model error is exemplified in Figs. 3 and 4, which will
be discussed in greater detail later in this section. The initial model
error is significant enough that without online approximation the
aircraft is not stable.

To illustrate the effect of constraints on the states and the robust-
ness of the control laws to such constraints, limits on both roll angle
and angle of attack are imposed. The roll-angle command is limited
to ±70 deg and an upper limit of +10 deg is imposed on the an-
gle of attack. Although this is a rather restrictive limit, it serves to
better demonstrate the robustness of the control algorithms to state
constraints. Robustness of the control laws to sudden, unforeseen
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Fig. 3 Learned total lift coefficient.

Fig. 4 Learned body pitching-moment coefficient.

Fig. 5 Flight-path-angle command tracking.

changes in the aircraft dynamics is demonstrated by introduction of
a sudden failure at t = 60 s in which the left midboard flap moves
to and becomes stuck at 15-deg deflection (half of its maximum).
This failure introduces a sudden and severe rolling and pitching
moment requiring rapid adaptation from the autopilot to maintain
stability.

Simulation results given in Figs. 5 and 6 show that the control ap-
proach provides good command tracking throughout and that track-

Fig. 6 Heading angle command tracking.

Fig. 7 Angle-of-attack command tracking.

ing performance is not significantly affected by the midboard flap
failure at t = 60 s. The initial transient in γ tracking is due to the
initial model error; however, accurate tracing is achieved rapidly.
The γ tracking error near t = 25, 45, 65, and 105 s is caused by
α being at its magnitude limit as shown in Fig. 7. The effect of
the actuator failure at t = 60 s is clearly observed in Fig. 5, but is
rapidly removed. Figure 8 shows the flight-path angle pseudocon-
trols X ≡ cos(γ )mV uχ and Y ≡ mV uγ from Eqs. (22) and (23), in
polar coordinates as discussed in Sec. III.

Figures 7 and 9 show the ideal commands (µo
c , α

o
c ) as dashed-

dotted lines, the actual commands (µc, αc) as solid lines, and the
states (µ, α) as dashed lines. Inspection of Figs. 7 and 9 more clearly
reveals the aggressiveness of the commanded maneuver relative to
the +10 deg α limit and the ±70 deg roll-angle limit. Also, although
the α command is only at its limit for short instances before the fail-
ure, it is much more frequently limited afterward. This is because
the failure introduces a nose-down moment and also reduces the
lift at a given angle of attack. Thus more angle of attack is needed
for the maneuver. Figure 9 shows that the roll-angle tracking is
quite good despite the failure. The roll-angle command is also fre-
quently saturated, but this is due primarily to the aggressiveness of
the heading command rather than the failure. However, the effects of
command saturation of this magnitude would have been detrimen-
tal to the learning, often resulting in instability, if it had not been
correctly accommodated in the control design by the introduction
of the compensated tracking errors.

Figures 10–12 show the commands (Pc, Qc, Rc) as dashed lines
and the states (P, Q, R) as solid lines. The ideal commands
(Po

c , Qo
c , Ro

c ) are not shown as they are essentially the same as
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Fig. 8 Flight-path-angle pseudocontrols.

Fig. 9 Roll-angle command tracking.

Fig. 10 Body-axis roll-rate command tracking.

Fig. 11 Body-axis pitch-rate command tracking.

Fig. 12 Body-axis yaw-rate command tracking.

(Pc, Qc, Rc). These are the control loops that are most affected
by the stuck surface. Although these figures seem to indicate the
presence of significant postfailure tracking error that should pre-
clude any flight-path angle or wind-axis angle command track-
ing, it is in fact the commands that are different postfailure and
that the (P, Q, R) body-rate responses are virtually unchanged be-
fore and after the failure. Note that by Eq. (38) and the fact that
we are using the measured surface deflection in Eq. (40), as dis-
cussed in the parenthetical note in Sec. V, the signal ξ3 �= 0 because
δ �= δo

c , because ξ3 �= 0, z̃3 and z̄3 cannot both be zero. Theorem 2
proves that z̄3 → 0; therefore, z̃3 → ξ3. However, the definition of
xo

3c in Eq. (37) accommodates for the nonzero ξ3 to maintain track-
ing in the outer loops. A comparison of pitch-rate tracking error
Q̃ and compensated tracking error Q̄ is given in Fig. 13. Compar-
isons of roll-rate and yaw-rate tracking errors are not given, but are
similar.

Next, Figs. 14–16 show the control surface positions over the
course of the simulation and clearly show the onset of the surface
failure at t = 60 s. A stuck-surface failure on the left side of the
aircraft is compensated for by the secondary surface on the same
side. The reason for this is twofold. First, compensation by the sur-
faces on the opposite side would create additional pitching/rolling
moment and thus result in greater total surface deflection. Second,
the yaw moment generated by the flaps in this model is mainly
caused by change in the camber of the airfoil rather than to drag
from of the surfaces. Therefore, this postfailure surface distribu-
tion does not result in significant yawing moment, and what little
is created is compensated by the spoilers. These figures also show
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Fig. 13 Pitch-rate command tracking errors.

Fig. 14 Midboard flap deflections.

Fig. 15 Outboard flap deflections.

that despite the failure, the surfaces have reasonable motion with
no oscillation. This illustrates that the control laws are reasonable
in actuation. Note that we have not resorted to high-gain control to
meet the control objective in the face of uncertain aerodynamics and
state and control limits.

Theorem 2 does not guarantee convergence of the approximated
functions. Instead, the approximator parameters can converge to
subspaces that allow the compensated tracking error to be zero. As

Fig. 16 Spoiler deflections.

the trajectory evolves and the tracking error becomes nonzero, the
parameters can adapt, and the Lyapunov function cannot increase.
Therefore, the approximated functions can converge towards the
true functions. To illustrate that online learning is possible despite
the high levels of saturation and sudden changes in aircraft param-
eters, Figs. 3 and 4 show select time slices of online aerodynamic
function learning over the input space (angle of attack). The shaded
region represents the range of angle of attack over which the vehicle
flew during the simulation. To stress function learning, these results
are from a simulation that was run for a longer time. The simulation
end time was increased to 300 s, and the failure occurred at 150 s;
all other parameters were left unchanged. Although the body lift is
learned as two separate components [see Eq. (63)], Fig. 3 presents
the complete lift curve (CL = CLo + CLα

α) rather than the individ-
ual components and shows rapid lift learning despite significant
initial error and sudden changes in vehicle dynamics. The effect of
the initial error in the lift parameters is evidenced in Fig. 5, where γ
tracking is initially poor, but improves significantly over time. Next,
Fig. 4 shows learning of the body pitching moment CM . This func-
tion is also learned reasonably well and improves with time, albeit
not as quickly as lift. An interesting feature of these figures is that
function learning is only accomplished over the portion of the input
space (marked by the shaded region) over which training samples
are accumulated, which stems from the local-support property of
the B splines used in the function approximators. The reason for the
difference in the pre- and postfailure true values of these functions
is that aerodynamic contributions of the stuck surface are subsumed
into the body contributions. Convergence of the learned functions
to the true functions is not required to meet the control objective,
nor is it guaranteed by the analysis herein.25

In conclusion, the simulation results presented in this section
have demonstrated three main characteristics of the control law de-
veloped in the preceding sections: 1) robustness to nonlinear model
error, 2) fault tolerance and rapid adaptation to actuator failures,
3) robustness to state and actuator constraints, and 4) excellent
tracking of aggressive commands despite the preceding events and
limitations.

IX. Parameter Settings and Guidelines
Note that the parameters Ki do not determine the trajectory track-

ing bandwidth of the i th control law. This is because the time
derivative ẋic of the reference command xic is included in that
control law. Instead, the parameters Ki determine the rate of de-
cay of transient errors in x̃i caused for example by initial condi-
tion errors or disturbances. Note that timescale separation is not
required; in fact, the theory of this paper only requires each Ki

matrix to be positive definite. However, it it is natural to select
K3 > K2 > K1. For the simulation of the preceding section, the
control gains were K1 = diag(0.8, 0.8, 1.0), K2 = diag(4, 4, 2), and
K3 = diag(20, 20, 10).
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Table 1 Command filter parameters

Command variable ωn , rad/s Mag limit Rate limit

χ 0.8 —— ——
γ 0.8 ±45 deg 10 deg/s
V 0.2 [50, 1000] ft/s 2 ft/s/s
µ 4 ±70 deg 120 deg/s
α 4 [−7, 10] deg ——
β 2 ±5 deg 15 deg/s
P 20 ±120 deg/s ——
Q 20 ±30 deg/s ——
R 10 ±15 deg/s ——

The specification of each of the command filters is determined by
its objective. If the purpose of the command filter is only to compute
a command and its derivative (i.e., there are no rate, magnitude, or
bandwidth limitations), then the filter could have unity gain and the
highest bandwidth consistent with the sampling rate; however, there
is usually no reason to select a bandwidth greater than the bandwidth
of the command filter of the next inner loop. If there are rate, magni-
tude, or bandwidth limitations on the signal that is intended to track
the output of the command filter, then the command filter must im-
pose those constraints on the command while also outputting the
derivative of the command. The command filter parameters used
for the simulation in the preceding section are given in Table 1. The
damping factor in each filter was 1.0.

X. Conclusions
This paper has been concerned with the problem of designing an

aircraft control system capable of tracking ground track, climb rate,
and speed commands from a mission planner while being robust to
initial model error as well as changes to the nonlinear model that
might occur during flight caused by failures and battle damage. This
paper derives the controller by extending the command filtering ap-
proach presented in Ref. 34. This method uses online approximation
to achieve robustness to unmodeled nonlinear effects, even if those
effects change during flight. This method also allows the controller
to enforce operating envelope constraints on the aircraft states that
serve as intermediate control signals in the backstepping controller.
The stability properties are proved using Lyapunov methods. The
control law and its stability properties are summarized in Sec. VI.
Section VIII discusses various aspects of the control approach rel-
ative to an unmanned-air-vehicle simulation example.

The presentation of this paper has assumed that the approximators
were capable of perfectly fitting the unknown nonlinear functions
(i.e., no approximation error). This is, of course, an idealized sit-
uation. The effects of approximation error and methods to counter
those effects are discussed in Ref. 40.

Appendix A: Magnitude, Rate,
and Bandwidth-Limiting Filter

Several places in this paper refer to filtering of a signal xo
c to

produce a magnitude, rate, and bandwidth-limited signal xc and its
derivative ẋc. One such filter is shown in Fig. 2. The state-space
representation is

[
q̇1(t)

q̇2(t)

]
=




q2

2ζωn

(
SR

{
ω2

n

2ζωn

[
SM

(
xo

c

) − q1

]} − q2

)

 (A1)

[
xc

ẋc

]
=

[
q1

q2

]
(A2)

where SM ( ) and SR( ) represent the magnitude and rate limit func-
tions. The function

SM (x) =




M if x ≥ M

x if |x | < M

−M if x ≤ −M

and SR is defined similarly. Note that if xo
c is bounded, then xc

and ẋc are bounded and continuous. Note also that ẋc is computed
without differentiation. When the state must remain in some oper-
ating envelope defined by the magnitude limit M and rate limit R,
the command filter ensures that the commanded trajectory and its
derivative satisfy these same constraints.

If the only objective in the design of the command filter is to
compute xc and its derivative, then M and R are infinitely large, and
the limiters do not need to be included in the filter implementation.

In the linear range of the functions SM and SR , the filter dynamics
are

[
q̇1(t)

q̇2(t)

]
=

[
0 1

−ω2
n −2ζωn

][
q1

q2

]
+

[
0

ω2
n

]
xo

c (A3)

[
xc

ẋc

]
=

[
q1

q2

]
(A4)

with transfer function from the input to the first output defined as

Xc(s)

Xo
c (s)

= ω2
n

s2 + 2ζωns + ω2
n

When command limiting is not in effect, the error xc − xo
c can

be made arbitrarily small by selecting ωn sufficiently larger than
the bandwidth of the signal xo

c . When command limiting is in ef-
fect, the error xc − xo

c will be bounded because both xc and xo
c are

bounded.

Appendix B: Aircraft Dynamics
This paper used the following representation of the dynamics of

a fixed-wing aircraft46,47:

χ̇ = (1/mV cos γ )[D sin β cos µ + Y cos β cos µ + L sin µ

+ T (sin α sin µ − cos α sin β cos µ)] (B1a)

γ̇ = (1/mV )[−D sin β sin µ − Y cos β sin µ + L cos µ

+ T (sin α cos µ + cos α sin β sin µ)] − (g/V ) cos γ (B1b)

V̇ = (1/m)(T cos α cos β − D cos β + Y sin β) − g sin γ (B1c)

µ̇ = (1/mV )[D sin β tan γ cos µ + Y cos β tan γ cos µ

+ L(tan β + tan γ sin µ) + T (sin α tan γ sin µ

+ sin α tan β − cos α sin β tan γ cos µ)]

− g tan β cos γ cos µ/V + Ps/cos β (B1d)

α̇ = (−1/mV cos β)[L + T sin α] + g cos γ cos µ/V cos β

+ Q − Ps tan β (B1e)

β̇ = (1/mV )[D sin β + Y cos β − T cos α sin β]

+ g cos γ sin µ/V − Rs (B1f)

Ṗ = (c1 R + c2 P)Q + c3 L̄ + c4 N̄ (B1g)

Q̇ = c5 P R − c6(P2 − R2) + c7 M̄ (B1h)

Ṙ = (c8 P − c2 R)Q + c4 L̄ + c9 N̄ (B1i)
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where the ci coefficients for i = 1, . . . , 9 are defined on p. 80 in
Ref. 47 and [

Ps

Rs

]
=

[
cos α sin α

− sin α cos α

][
P

R

]
(B2)

Tables C1, C2, and C3 at the end of this paper define the constants,
variable, and functions used in the preceding equations.

Appendix C: Notation

Table C1 Constant definitions

Symbol Meaning

m Mass
g Vertical gravity component
ci Rotational inertia parameters defined on p. 80 in Ref. 47
αi Weighting parameters in the Lyapunov analysis
K∗ Control gain for variable ∗
L∗ Estimator gain for variable ∗
�∗ Parameter adaptation matrix for function ∗
b Reference wing span
c̄ Mean aerodynamic chord

Table C2 Variable definitions

Variable Definition

χ Ground track angle
γ Climb angle
V Speed
µ Roll angle
α Angle of attack
β Sideslip
P Body-axis roll rate
Q Body-axis pitch rate
R Body-axis yaw rate
M Mach number
Ps Stability axis roll rate
Rs Stability axis yaw rate
u∗ Actual control signal for variable ∗
ûo∗c

Commanded control signal for variable ∗
computed using f̂∗

û∗c Achievable commanded control signal for variable ∗
computed using f̂∗

δi Deflection of the i th control surface
T Thrust
ζ∗ Filter control error for variable ∗
y∗ Portion of control signal for variable ∗ that

depends on tracking errors from a more inner loop
x∗ Portion of control signal for variable ∗ that

depends on tracking errors from a more outer loop

Table C3 Function definitions

Symbol Definition

D Body-axis drag force; This function is unknown
Y Body-axis side force; This function is unknown
L Body-axis lift force; This function is unknown
L̄ Stability-axis roll moment; This function is unknown
M̄ Stability-axis pitch moment; This function is unknown
N̄ Stability-axis yaw moment; This function is unknown
D̂ Approximated body-axis drag
Ŷ Approximated body-axis side force
L̂ Approximated body-axis liftˆ̄L Approximated stability-axis roll momentˆ̄M Approximated stability-axis pitch momentˆ̄N Approximated stability-axis yaw moment
f∗ Portion of the dynamic equation for variable

∗ that contains at least one of the six unknown functions
F∗ Portion of the dynamic equation for variable

∗ that contains known functions
f̂∗ Approximation to f∗
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